

Building General-Purpose Robots through Learning and Composing Generalizable Skills

Xiaolin Fang

Towards General-Purpose Embodied Agents

Goal: Having a robot that can do various tasks, with many objects, across different environments

Towards General-Purpose Embodied Agents

Generalization

- Task Description
- Visual Changes
- Embodiment
- Spatial Constraints

Learning diverse robot behaviors from Data

$$\pi_{\theta}(s_{:t}, a_{:t}, g) \rightarrow a_{t}$$

Dataset
$$D = \{(s_i, a_i, g)\}$$

[FAST: Efficient Robot Action Tokenization for Vision-Language-Action Models, Physical Intelligence, Pertsch et.al, 2025] [OpenVLA: An Open-Source Vision-Language-Action Model, Kim et.al, 2024]

How do we learn diverse robot behaviors that can generalize to different environments?

With Low Data Collection Effort per Task

Why should we care about data efficiency?

How do we learn diverse robot behaviors that can generalize to different environments?

With Low Data Collection Effort per Task

Less data requirement per task → More diverse behaviors

Data-Efficient Learning for a Single Task

KALM

Keypoint Abstraction using Large Models for Object-Relative Imitation Learning

Xiaolin Fang*, Bo-Ruei Huang*, Jiayuan Mao*, Jasmine Shone, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling

Semantics

Object Parts, Relations, Keypoints

KALM: Keypoints as the contextual abstraction

- State Representation
 - Sparse and Local

- Frame for Action Representation
 - Object-Relative Action Frame

Problem Formulation

- Goal
 - Keypoint Extraction Identify a set of keypoints K_i in each image I_i in D

Problem Formulation

- Goal
 - Keypoint Extraction Identify a set of keypoints K_i in each image I_i in D
 - Trajectory Prediction Model Learn a keypoint-conditioned trajectory prediction model π_{θ} ($\tau_i \mid K_i, F_i$)

Keypoint-Conditioned Diffusion Model

Key Contributions

- Keypoint Extraction using Large Models
- Keypoint-Conditioned Action Model

Key Contributions

- Keypoint Extraction using Large Models
- Keypoint-Conditioned Action Model

Key Contributions

- · Keypoint Distillation using Large Models
- Keypoint-Conditioned Action Model

Keypoint-Conditioned Action Model

Proposed Keypoints

Keypoint-conditioned Diffusion Model

- Input
 - Keypoint locations $\{P_j\}^{|K|}$
 - Keypoint features $\{F_j\}^{|K|}$

- Output
 - A sequence of 6-DoF Poses of the robot's end-effector, relative to the center of key points

Keypoint-Conditioned Action Model

Trajectory: au_{EE}

Generalization

- Novel Objects
- Object Poses
- Camera Views
- Unseen Environments

Keypoints

- State Representation
 - Sparse and Local

- Action Representation
 - Object-Relative Action Frame

Generalization

- Novel Objects
- Object Poses
- Camera Views
- Unseen Environments

Keypoints

- State Representation
 - Sparse and Local

- Action Representation
 - Object-Relative Action Frame

Action Model as Trajectory Sampler

Constraints in Novel Environments

Action Model as Trajectory Sampler

Constraints in Novel Environments

Action Model as Trajectory Sampler

Constraints in Novel Environments

- Sample N trajectories $\{\tau_{EE}^i\}_{i=1}^N$
- Check whether a trajectory satisfy collision-constraint or robot kinematic constraints in the environment

Baselines

- Diffuser : RGB Image
- Diffuser + Keypoint : RGB Image and 2D Pixel Locations of the Keypoints
- 3D Diffuser Actor: RGB-D Image
- 3D Diffuser Actor + Keypoint: RGB-D Image and 3D Positions of the Keypoints
- KALM (Ours): 3D Keypoint Locations and Keypoint Features

Contextual Abstraction Improves Data Efficiency

Training Scenes

Distilled Keypoints

Training Scenes

Distilled Keypoints

Reactive Policy - Real-Time Tracking

Conclusions

• Leveraging foundation models - let them do the tasks they are good at

Sparse representation enables data-efficient imitation learning

Pick your space

Open Problems

- Implicit Constraints beyond Demonstration Data: Inferring latent rules
- Abstraction vs. Fidelity: Choose the right level for the task

Open Problems

- Implicit Constraints beyond Demonstration Data: Inferring latent rules
- Abstraction vs. Fidelity: Choose the right level for the task

Foundation Models?

Conclusions

• Leveraging foundation models - let them do the tasks they are good at

Sparse representation enables data-efficient imitation learning

Pick your space